The absolute γ and β branches following the β^+ decay of ³²Cl

J.C. Hardy, V.E. Iacob, D. Melconian, N. Nica, H.I. Park, G. Tabacaru, I.S. Towner,

L. Trache, R.E. Tribble, and Y. Zhai

The β and γ branches of the β^+ decay of 1^+ , T = 1 ³²Cl have been measured to provide a discriminating test of the isospin-mixing corrections, δ_C , applied to the 0^+ to 0^+ superallowed transitions used to determine V_{ud} . Up until now, there have been no nuclei studied where δ_C is larger than ~2%. We focused on improving the branching ratio of the transition to the analogue 1^+ , T = 1 state in ³²S whose position in the spectrum at 7002-keV excitation is very close to a known 1^+ , T = 0 state at 7190 keV; this greatly enhances the size of the isospin-symmetry-breaking (ISB) correction. Our calculation of the ISB effect for this nucleus is $\delta_C = 4.6(5)\%$ [1], a value significantly larger than those found in any of the nuclei used to extract V_{ud} . In this way, ³²Cl provides a unique opportunity to test ISB calculations where the effect is relatively quite large. Furthermore, a precise knowledge of the absolute β and γ branches following the β decay of ³²Cl may be used as an *in situ* efficiency calibration for the β -delayed proton decay of ³²Ar which itself may be used to test isospin-mixing corrections (see Ref. [2]).

The ³²Cl was produced via the inverse-kinematic transfer reaction ¹H(³²S, *n*)³²Cl using a LN₂cooled, H₂ gas target with a 400 nA ³²S primary beam at 24.8 MeV/nucleon. The reaction products were spatially separated by MARS, resulting in a 91% pure, 20 MeV/nucleon ³²Cl beam with an intensity of ~2 ×10⁵ ions/s. The beam was implanted and collected in an aluminized-Mylar tape for 0.8 s before a fast tape-transport system moved the activity to a shielded counting station 90 cm away. Data for β-γ coincident events, shown in Fig. 1, were acquired using a 1.5 inch-diameter, 1 mm-thick scintillator and a

FIG. 1. γ spectrum observed by the HPGe in coincidence with a β . Full-energy peaks are labeled with their energy, and ones associated with the 7001-keV isobaric analogue state are highlighted with boxed values. The symbol * and the symbol ** refer to single- and double-escape peaks, respectively.

70% HPGe detector. Count times were for 1, 2, and 4 sec (83%, 11%, and 6% of the data, respectively). The scintillator was placed 0.5 cm from the activity, detecting >40 keV positrons with ~32% efficiency. On the opposite side of the tape the HPGe was placed a large distance away (15.1 cm) to reduce the effects of coincidence summing of the γ rays. The cycle of collecting, transporting and measuring the ³²Cl activity was repeated continuously throughout the experiment.

Once the peak areas were obtained, we used the precisely known efficiency of the HPGe detector to convert them into relative yields of γ rays. We then fit the β and γ branches to reproduce these yields. Our measurement has found 3 new β branches, 22 new γ lines, placed limits on 10 potential γ transitions, and improved the precision of the branches and yields reported previously [3, 4] by about an order of magnitude and is summarized in Fig. 2.

FIG. 2. Decay scheme for ³²Cl based on this work (with results taken from Armini et al. and ENSDF labeled). The 1^+ , T = 1 analogue state at 7001 keV mixes with the nearby 1^+ , T = 0 state, giving rise to the (relatively) large observed isospin-mixing correction.

With regard to ISB effects, we found the β branch to the isobaric-analogue state (IAS) at 7002 keV is $R = (22.47\pm0.13^{+0.16}_{-0.12})\%$. The first uncertainty is statistical and the second is dominated by two sources of systematic uncertainty: ${}^{+0.11}_{-0.12}$ % is from the $(1.0^{+0.2}_{-0.5})\%$ ground state branch reported by Armini *et al.* [5], and $\pm 0.10\%$ from the photopeak efficiency of the HPGe detector. The partial half-life of the superallowed branch is given by $t = \frac{t_{1/2}}{R}(1 + P_{\text{EC}})$, where the ³²Cl half-life is $t_{1/2} = 298(1)$ ms, *R* is the superallowed branching ratio quoted above, and the small electron-capture fraction is calculated to be $P_{\text{EC}} = 0.071\%$. The statistical rate function is calculated to be $f = 2411.6\pm2.3\pm0.3$, where the first uncertainty

is from the Q_{EC} value and the second is from the shell-model calculation of the shape-correction factor. Combined, we find the experimental *ft* value for decay to the IAS is *ft* = 3200(30) s, where the precision is dominated by the ±0.9% uncertainty in the branch to the IAS. This result can be interpreted in terms of an ISB effect via

$$\delta_{C}^{\exp} = 1 + \delta_{\rm NS} - \frac{2\langle Ft^{0^+ \to 0^+} \rangle}{ft(1 + \delta_{R}')[B(F) + B({\rm GT})]},$$

where δ_{NS} is a nuclear-structure-dependent radiative correction calculated to be -0.15(2)%, $\langle Ft^{0^+ \to 0^+} \rangle = 3071.81(83)$ s is the average corrected *ft* value of the 13 most precisely measured pure Fermi superallowed transitions [6], $\delta'_{\text{R}} = 1.421(32)\%$ is another radiative correction, and *B*(GT) is calculated to be $(1.8^{+2.3}_{-1.7}) \times 10^{-3}$ which is negligibly small compared to the dominant Fermi strength of *B*(F) = 2. Thus we arrive at an ISB effect of $\delta_{C}^{exp} = 5.3(9)\%$, the largest ever determined in a superallowed Fermi transition.

This result has been recently published in Refs. [7, 8].

- [1] J.C. Hardy, V.E. Iacob, D. Melconian, N. Nica, H.I. Park, G. Tabacaru, I.S. Towner, L. Trache, R.E. Tribble, and Y. Zhai, *Progress in Research*, Cyclotron Institute, Ttexas A&M University (2011-2012), p.I-13.
- [2] M. Bhattacharya, D. Melconian, A. Komives, S. Triambak, A. Garcia, E. Adelberger, B. Brown, M. Cooper, T. Glasmacher, V. Guimaraes and P. Mantica, Phys. Rev. C 77, 065503 (2008).
- [3] C. Détraz, C. Zaidins, D. Frantsvog, R. Wilson and A. Kunselman, Nucl. Phys. A203, 414 (1973).
- [4] W. Anderson, L. Dillman and J. Kraushaar, Nucl. Phys. 77, 401 (1966).
- [5] A. Armini, J. Sunier and J. Richardson, Phys. Rev. 165, 1194 (1968).
- [6] J.C. Hardy and I.S. Towner, Phys. Rev. C 79, 055502 (2009).
- [7] D. Melconian, S. Triambak, C. Bordeanu, A. Garcia, J. Hardy, V. Iacob, N. Nica, H. Park, G. Tabacaru, I. Towner, L. Trache, R. Tribble and Y. Zhai, Phys. Rev. Letts. 107, 182301 (2011).
- [8] D. Melconian, S. Triambak, C. Bordeanu, A. Garcia, J. Hardy, V. Iacob, N. Nica, H. Park, G. Tabacaru, I. Towner, L. Trache, R. Tribble and Y. Zhai, Phy. Rev. C 85, 025501 (2012).